
Introduction to Programming

Languages and Techniques

FULL PYTHON TUTORIAL
Last updated 9/1/2014

xkcd.com

2

 Developed by Guido van Rossum in the early 1990s

 Named after Monty Python

 Available on eniac

 Available for download from http://www.python.org

Full Python Tutorial

http://www.python.org/

3

Python

 Interpreted language: work with an evaluator
for language expressions (like DrJava, but
more flexible)

 Dynamically typed: variables do not have a
predefined type

 Rich, built-in collection types:
 Lists

 Tuples

 Dictionaries (maps)

 Sets

 Concise

4

Language features

 Indentation instead of braces

 Several sequence types
 Strings ’…’: made of characters, immutable

 Lists […]: made of anything, mutable

 Tuples (…) : made of anything, immutable

 Powerful subscripting (slicing)

 Functions are independent entities (not all
functions are methods)

 Exceptions as in Java

 Simple object system

 Iterators (like Java) and generators

5

Why Python?

 Good example of scripting language

 “Pythonic” style is very concise

 Powerful but unobtrusive object system

 Every value is an object

 Powerful collection and iteration

abstractions

 Dynamic typing makes generics easy

6

Dynamic typing – the key difference

 Java: statically typed
 Variables are declared to refer to objects of a given

type

 Methods use type signatures to enforce contracts

 Python
 Variables come into existence when first assigned

to

 A variable can refer to an object of any type

 All types are (almost) treated the same way

 Main drawback: type errors are only caught at
runtime

Recommended Reading

 On-line Python tutorials

 The Python Tutorial (http://docs.python.org/tutorial/)

 Dense but more complete overview of the most important parts

of the language

 See course home page for others

 PEP 8- Style Guide for Python Code

 http://www.python.org/dev/peps/pep-0008/

 The official style guide to Python, contains many helpful

programming tips

 Many other books and on-line materials

 If you have a specific question, try Google first

7

http://docs.python.org/tutorial/
http://www.python.org/dev/peps/pep-0008/

IMPORTANT!

 This slide deck is a superset of slides used in lecture.

 Extra slides have titles in Dark Red.

 POINTS IN DARK RED ON THE SLIDES WILL ALSO

BE SKIPPED IN LECTURE

 Usually they’re about parts of Python that are very much like Java

 SO I WON’T TALK ABOUT THIS POINT IN LECTURE

 The full slide set provides a reasonable manual for

Python.

 LEARN PYTHON BY PLAYING WITH EXAMPLES

FROM THE SLIDES & MAKING UP YOUR OWN

 That Python is interpreted & simple makes this easy.....

8

Technical Issues

Installing & Running Python

10

Which Python?

 Python 2.7
 Current version on Eniac, so we’ll use it

 Last stable release before version 3

 Implements some of the new features in version 3,
but fully backwards compatible

 Python 3
 Released a few years ago

 Many changes (including incompatible changes)

 Much cleaner language in many ways

 Strings use Unicode, not ASCII

 But: A few important third party libraries are not
yet compatible with Python 3 right now

11

The Python Interpreter

 Interactive interface to Python
% python

Python 2.5 (r25:51908, May 25 2007, 16:14:04)

[GCC 4.1.2 20061115 (prerelease) (SUSE Linux)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

 Python interpreter evaluates inputs:

>>> 3*(7+2)

27

12

The IDLE GUI Environment

(Windows)

13

IDLE Development Environment

 Shell for interactive evaluation.

 Text editor with color-coding and smart indenting

for creating Python files.

 Menu commands for changing system settings

and running files.

14

Running Interactively on UNIX

(ENIAC)
On Unix…

% python

>>> 3+3

6

 Python prompts with ‘>>>’.

 To exit Python (not Idle):

 In Unix, type CONTROL-D

 In Windows, type CONTROL-Z + <Enter>

15

Running Programs on UNIX

% python filename.py

You can create python files using emacs.

(There’s a special Python editing mode.

M-x python-mode)

To make a python file executable, make this text the

first line of the file :

#!/usr/bin/python

The Basics

17

A Code Sample (in IDLE)

x = 34 - 23 # A comment.

y = “Hello” # Another one.

z = 3.45

if z == 3.45 or y == “Hello”:

x = x + 1

y = y + “ World” # String concat.

print x

print y

18

Enough to Understand the Code

 Indentation matters to the meaning of the code:

 Block structure indicated by indentation

 The first assignment to a variable creates it.

 Variable types don’t need to be declared.

 Python figures out the variable types on its own.

 Assignment uses = and comparison uses ==.

 For numbers + - * / % are as expected.

 Special use of + for string concatenation.

 Special use of % for string formatting (as with printf in C)

 Logical operators are words (and, or, not)
not symbols

 Simple printing can be done with print.

19

Basic Datatypes

 Integers (default for numbers)

z = 5 / 2 # Answer is 2, integer division.

 Floats

x = 3.456

 Strings

 Can use “” or ‘’ to specify.

“abc” ‘abc’ (Same thing.)

 Unmatched can occur within the string.

“matt’s”

 Use triple double-quotes for multi-line strings or strings than

contain both ‘ and “ inside of them:

“““a‘b“c”””

20

Whitespace

Whitespace is meaningful in Python: especially

indentation and placement of newlines.

 Use a newline to end a line of code.

 Use \ when must go to next line prematurely.

 No braces { } to mark blocks of code in Python…

Use consistent indentation instead.

 The first line with less indentation is outside of the block.

 The first line with more indentation starts a nested block

 Often a colon appears at the start of a new block.

(E.g. for function and class definitions.)

21

Comments

 Start comments with # – the rest of line is ignored.

 Can include a “documentation string” as the first line of any

new function or class that you define.

 The development environment, debugger, and other tools

use it: it’s good style to include one.

def my_function(x, y):

“““This is the docstring. This

function does blah blah blah.”””

The code would go here...

22

Assignment

 Binding a variable in Python means setting a
name to hold a reference to some object.

 Assignment creates references, not copies (like Java)

 A variable is created the first time it appears on
the left side of an assignment expression:

x = 3

 An object is deleted (by the garbage collector)
once it becomes unreachable.

 Names in Python do not have an intrinsic type.
Objects have types.

 Python determines the type of the reference automatically
based on what data is assigned to it.

23

(Multiple Assignment)

 You can also assign to multiple names at the same time.

>>> x, y = 2, 3

>>> x

2

>>> y

3

24

Naming Rules

 Names are case sensitive and cannot start with a number.
They can contain letters, numbers, and underscores.
bob Bob _bob _2_bob_ bob_2 BoB

 There are some reserved words:
and, assert, break, class, continue, def, del,

elif, else, except, exec, finally, for, from,

global, if, import, in, is, lambda, not, or, pass,

print, raise, return, try, while

Sequence types:

Tuples, Lists, and Strings

26

Sequence Types

1. Tuple

 A simple immutable ordered sequence of items

 Immutable: a tuple cannot be modified once created....

 Items can be of mixed types, including collection types

2. Strings

 Immutable

 Conceptually very much like a tuple

 Regular strings use 8-bit characters. Unicode
strings use 2-byte characters. (All this is changed
in Python 3.)

3. List

 Mutable ordered sequence of items of mixed types

27

Sequence Types 2

 The three sequence types (tuples, strings, and lists) share

much of the same syntax and functionality.

 Tuples are defined using parentheses (and commas).

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

 Lists are defined using square brackets (and commas).

>>> li = [“abc”, 34, 4.34, 23]

 Strings are defined using quotes (“, ‘, or “““).

>>> st = “Hello World”

>>> st = ‘Hello World’

>>> st = “““This is a multi-line

string that uses triple quotes.”””

28

Sequence Types 3

 We can access individual members of a tuple, list, or string
using square bracket “array” notation.

 Note that all are 0 based…

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

>>> tu[1] # Second item in the tuple.

‘abc’

>>> li = [“abc”, 34, 4.34, 23]

>>> li[1] # Second item in the list.

34

>>> st = “Hello World”

>>> st[1] # Second character in string.

‘e’

29

Negative indices

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with 0.

>>> t[1]

‘abc’

Negative lookup: count from right, starting with –1.

>>> t[-3]

4.56

30

Slicing: Return Copy of a Subset 1

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Return a copy of the container with a subset of the original
members. Start copying at the first index, and stop copying
before the second index.

>>> t[1:4]

(‘abc’, 4.56, (2,3))

You can also use negative indices when slicing.
>>> t[1:-1]

(‘abc’, 4.56, (2,3))

Optional argument allows selection of every nth item.
>>> t[1:-1:2]

(‘abc’, (2,3))

31

Slicing: Return Copy of a Subset 2

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Omit the first index to make a copy starting from the beginning
of the container.

>>> t[:2]

(23, ‘abc’)

Omit the second index to make a copy starting at the first
index and going to the end of the container.

>>> t[2:]

(4.56, (2,3), ‘def’)

32

Copying the Whole Sequence

To make a copy of an entire sequence, you can use [:].

>>> t[:]

(23, ‘abc’, 4.56, (2,3), ‘def’)

Note the difference between these two lines for mutable

sequences:

>>> list2 = list1 # 2 names refer to 1 ref

Changing one affects both

>>> list2 = list1[:] # Two independent copies, two refs

33

The ‘in’ Operator

 Boolean test whether a value is inside a collection (often
called a container in Python:

>>> t = [1, 2, 4, 5]

>>> 3 in t

False

>>> 4 in t

True

>>> 4 not in t

False

 For strings, tests for substrings
>>> a = 'abcde'
>>> 'c' in a

True

>>> 'cd' in a

True

>>> 'ac' in a

False

 Be careful: the in keyword is also used in the syntax of
for loops and list comprehensions.

34

The + Operator

 The + operator produces a new tuple, list, or string whose
value is the concatenation of its arguments.

 Extends concatenation from strings to other types

>>> (1, 2, 3) + (4, 5, 6)

(1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

>>> “Hello” + “ ” + “World”

‘Hello World’

Mutability:

Tuples vs. Lists

36

Lists: Mutable

>>> li = [‘abc’, 23, 4.34, 23]

>>> li[1] = 45

>>> li

[‘abc’, 45, 4.34, 23]

 We can change lists in place.

 Name li still points to the same memory reference when

we’re done.

37

Tuples: Immutable

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

>>> t[2] = 3.14

Traceback (most recent call last):

File "<pyshell#75>", line 1, in -toplevel-

tu[2] = 3.14

TypeError: object doesn't support item assignment

You can’t change a tuple.

You can make a fresh tuple and assign its reference to a previously
used name.
>>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)

 The immutability of tuples means they’re faster than lists.

38

Operations on Lists Only 1

>>> li = [1, 11, 3, 4, 5]

>>> li.append(‘a’) # Note the method syntax

>>> li

[1, 11, 3, 4, 5, ‘a’]

>>> li.insert(2, ‘i’)

>>>li

[1, 11, ‘i’, 3, 4, 5, ‘a’]

39

The extend method vs the +

operator.
 + creates a fresh list (with a new memory reference)

 extend is just like add in Java; it operates on list li in place.

>>> li.extend([9, 8, 7])

>>>li

[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]

Confusing:

 extend takes a list as an argument unlike Java

 append takes a singleton as an argument.

>>> li.append([10, 11, 12])

>>> li

[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7, [10, 11, 12]]

40

Operations on Lists Only 3
>>> li = [‘a’, ‘b’, ‘c’, ‘b’]

>>> li.index(‘b’) # index of first occurrence*

1

*more complex forms exist

>>> li.count(‘b’) # number of occurrences

2

>>> li.remove(‘b’) # remove first occurrence

>>> li

[‘a’, ‘c’, ‘b’]

41

Operations on Lists Only 4
>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*

>>> li

[8, 6, 2, 5]

>>> li.sort() # sort the list *in place*

>>> li

[2, 5, 6, 8]

>>> li.sort(some_function)

sort in place using user-defined comparison

42

Tuples vs. Lists

 Lists slower but more powerful than tuples.

 Lists can be modified, and they have lots of handy operations we

can perform on them.

 Tuples are immutable and have fewer features.

 To convert between tuples and lists use the list() and tuple()

functions:

li = list(tu)

tu = tuple(li)

Dictionaries: a mapping collection type

Dictionaries: Like maps in Java

 Dictionaries store a mapping between a set of keys

and a set of values.

 Keys can be any immutable type.

 Values can be any type

 Values and keys can be of different types in a single dictionary

 You can

 define

 modify

 view

 lookup

 delete

the key-value pairs in the dictionary.

44

Creating and accessing

dictionaries

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}

>>> d[‘user’]

‘bozo’

>>> d[‘pswd’]

1234

>>> d[‘bozo’]

Traceback (innermost last):

File ‘<interactive input>’ line 1, in ?

KeyError: bozo

45

Updating Dictionaries

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}

>>> d[‘user’] = ‘clown’

>>> d

{‘user’:‘clown’, ‘pswd’:1234}

 Keys must be unique.

 Assigning to an existing key replaces its value.

>>> d[‘id’] = 45

>>> d

{‘user’:‘clown’, ‘id’:45, ‘pswd’:1234}

 Dictionaries are unordered

 New entry might appear anywhere in the output.

 (Dictionaries work by hashing)

46

Removing dictionary entries
>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

>>> del d[‘user’] # Remove one. Note that del is

a function.

>>> d

{‘p’:1234, ‘i’:34}

>>> d.clear() # Remove all.

>>> d

{}

>>> a=[1,2]

>>> del a[1] # (del also works on lists)

>>> a

[1]

47

Useful Accessor Methods
>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

>>> d.keys() # List of current keys

[‘user’, ‘p’, ‘i’]

>>> d.values() # List of current values.

[‘bozo’, 1234, 34]

>>> d.items() # List of item tuples.

[(‘user’,‘bozo’), (‘p’,1234), (‘i’,34)]

48

Boolean Expressions

True and False

 True and False are constants

 Other values are treated as equivalent to either
True or False when used in conditionals:
 False: zero, None, empty containers

 True: non-zero numbers, non-empty objects

 See PEP 8 for the most Pythonic ways to compare

 Comparison operators: ==, !=, <, <=, etc.
 X == Y

 X and Y have same value (like Java equals method)

 X is Y :

 X and Y refer to the exact same object (like Java ==)

50

Logical Operators

 You can also combine Boolean expressions.

 True if a is True and b is True: a and b

 True if a is True or b is True: a or b

 True if a is False: not a

51

Conditional Expressions

 x = true_value if condition else false_value

 lazy evaluation:

 First, condition is evaluated

 If True, true_value is evaluated and returned

 If False, false_value is evaluated and returned

52

Control Flow

if Statements (as expected)
if x == 3:

print "X equals 3."

elif x == 2:

print "X equals 2."

else:

print "X equals something else."

print "This is outside the ‘if’."

Note:

 Use of indentation for blocks

 Colon (:) after boolean expression

54

while Loops (as expected)
>>> x = 3

>>> while x < 5:

print x, "still in the loop"

x = x + 1

3 still in the loop

4 still in the loop

>>> x = 6

>>> while x < 5:

print x, "still in the loop"

>>>

55

break and continue

 You can use the keyword break inside a loop to

leave the while loop entirely.

 You can use the keyword continue inside a loop

to stop processing the current iteration of the

loop and immediately go on to the next one.

56

assert

 An assert statement will check to make sure that

something is true during the course of a program.

 If the condition if false, the program stops

 (more accurately: throws an exception)

assert(number_of_players < 5)

 Also found in Java; we just didn’t mention it!

57

For Loops

For Loops 1

 For-each is Python’s only form of for loop

 A for loop steps through each of the items in a collection
type, or any other type of object which is “iterable”

for <item> in <collection>:

<statements>

 If <collection> is a list or a tuple, then the loop steps
through each element of the sequence.

 If <collection> is a string, then the loop steps through each
character of the string.

for someChar in “Hello World”:

print someChar

59

For Loops 2

for <item> in <collection>:

<statements>

 <item> can be more complex than a single

variable name.

 If the elements of <collection> are themselves collections,

then <item> can match the structure of the elements. (We

saw something similar with list comprehensions and with

ordinary assignments.)

for (x, y) in [(a,1), (b,2), (c,3), (d,4)]:

print x

60

For loops and the range() function

 We often want to write a loop where the variables ranges

over some sequence of numbers. The range() function

returns a list of numbers from 0 up to but not including the

number we pass to it.

 range(5) returns [0,1,2,3,4]

 So we can say:

for x in range(5):

print x

 (There are several other forms of range() that provide

variants of this functionality…)

 xrange() returns an iterator that provides the same

functionality more efficiently

61

Abuse of the range() function

 Don't use range() to iterate over a sequence solely to have

the index and elements available at the same time

 Avoid:

for i in range(len(mylist)):

print i, mylist[i]

 Instead:

for (i, item) in enumerate(mylist):

print i, item

 This is an example of an anti-pattern in Python

 For more, see:

 http://www.seas.upenn.edu/~lignos/py_antipatterns.html

 http://stackoverflow.com/questions/576988/python-specific-antipatterns-and-bad-

practices

62

http://www.seas.upenn.edu/~lignos/py_antipatterns.html
http://stackoverflow.com/questions/576988/python-specific-antipatterns-and-bad-practices

Generating Lists using

“List Comprehensions”

List Comprehensions 1

 A powerful feature of the Python language.
 Generate a new list by applying a function to every member

of an original list.

 Python programmers use list comprehensions extensively.
You’ll see many of them in real code.

[expression for name in list]

64

List Comprehensions 2

>>> li = [3, 6, 2, 7]

>>> [elem*2 for elem in li]

[6, 12, 4, 14]

[expression for name in list]

 Where expression is some calculation or operation
acting upon the variable name.

 For each member of the list, the list comprehension

1. sets name equal to that member, and

2. calculates a new value using expression,

 It then collects these new values into a list which is the
return value of the list comprehension.

[expression for name in list]

65

List Comprehensions 3

 If the elements of list are other collections, then
name can be replaced by a collection of names
that match the “shape” of the list members.

>>> li = [(‘a’, 1), (‘b’, 2), (‘c’, 7)]

>>> [n * 3 for (x, n) in li]

[3, 6, 21]

[expression for name in list]

66

Filtered List Comprehension 1

 Filter determines whether expression is performed

on each member of the list.

 When processing each element of list, first check if

it satisfies the filter condition.

 If the filter condition returns False, that element is

omitted from the list before the list comprehension

is evaluated.

[expression for name in list if filter]

67

>>> li = [3, 6, 2, 7, 1, 9]

>>> [elem * 2 for elem in li if elem > 4]

[12, 14, 18]

 Only 6, 7, and 9 satisfy the filter condition.

 So, only 12, 14, and 18 are produced.

Filtered List Comprehension 2
[expression for name in list if filter]

68

 Since list comprehensions take a list as input and

produce a list as output, they are easily nested:

>>> li = [3, 2, 4, 1]

>>> [elem*2 for elem in

[item+1 for item in li]]

[8, 6, 10, 4]

 The inner comprehension produces: [4, 3, 5, 2].

 So, the outer one produces: [8, 6, 10, 4].

Nested List Comprehensions

69

For Loops / List Comprehensions

 Python’s list comprehensions provide a natural
idiom that usually requires a for-loop in other
programming languages.

 As a result, Python code uses many fewer for-loops

 Caveat! The keywords for and in also appear in the
syntax of list comprehensions, but this is a totally
different construction.

70

Functions in Python

(Methods later)

First line with less

indentation is considered to be

outside of the function definition.

Defining Functions

No declaration of types of arguments or result

def get_final_answer(filename):

"""Documentation String"""

line1

line2

return total_counter

...

Function definition begins with def Function name and its arguments.

‘return’ indicates the

value to be sent back to the caller.

Colon.

72

Calling a Function

>>> def myfun(x, y):

return x * y

>>> myfun(3, 4)

12

73

Functions without returns

 All functions in Python have a return value
 even if no return line inside the code.

 Functions without a return return the special value
None.
 None is a special constant in the language.

 None is used like null in Java.

 None is also logically equivalent to False.

 The interpreter doesn’t print None

74

Function overloading? No.

 There is no function overloading in Python.

 Unlike Java, a Python function is specified by its name alone

 The number, order, names, or types of its arguments cannot be

used to distinguish between two functions with the same name.

 Two different functions can’t have the same name, even if they

have different numbers of arguments.

 But operator overloading – overloading +, ==, -, etc. – is possible

using special methods on various classes (see later slides)

75

Functions are first-class objects in Python

 Functions can be used just like any other data

 They can be

 Arguments to function

 Return values of functions

 Assigned to variables

 Parts of tuples, lists, etc

 …

>>> def myfun(x):

return x*3

>>> def apply(q, x):

return q(x)

>>> apply(myfun, 7)

21

76

 Functions can be defined without giving them names.

 This is most useful when passing a short function as an
argument to another function.

>>> apply(lambda z: z * 4, 7)

28

 The first argument to apply() is an unnamed function that

takes one input and returns the input multiplied by four.

 Note: only single-expression functions can be defined

using this lambda notation.

 Lambda notation has a rich history in CS research and the

design of many current programming languages.

Lambda Notation

77

like anonymous

inner classes in Java

Default Values for Arguments

 You can provide default values for a function’s arguments

 These arguments are optional when the function is called

>>> def myfun(b, c=3, d=“hello”):

return b + c

>>> myfun(5,3,”hello”)

>>> myfun(5,3)

>>> myfun(5)

All of the above function calls return 8.

78

 Functions can be called with arguments out of order

 These arguments are specified in the call

 Keyword arguments can be used for a final subset of
the arguments.

>>> def myfun (a, b, c):

return a-b

>>> myfun(2, 1, 43)

1

>>> myfun(c=43, b=1, a=2)

1

>>> myfun(2, c=43, b=1)

1

Keyword Arguments

79

Inheritance

81

Subclasses

 A class can extend the definition of another class
 Allows use (or extension) of methods and attributes already

defined in the previous one.

 New class: subclass. Original: parent, ancestor or superclass

 To define a subclass, put the name of the
superclass in parentheses after the subclass’s
name on the first line of the definition.



class ai_student(student):

 Python has no ‘extends’ keyword like Java.

 Multiple inheritance is supported.

82

Redefining Methods

 Very similar to over-riding methods in Java

 To redefine a method of the parent class, include a new
definition using the same name in the subclass.

 The old code won’t get executed.

 To execute the method in the parent class in addition to
new code for some method, explicitly call the parent’s
version of the method.

parentClass.methodName(self, a, b, c)

 The only time you ever explicitly pass ‘self’ as an argument is when
calling a method of an ancestor.

83

Extending __init__

 Very similar to Java

 Commonly, the ancestor’s __init__ method is

executed in addition to new commands.

 Must be done explicitly

 You’ll often see something like this in the __init__

method of subclasses:

parentClass.__init__(self, x, y)

where parentClass is the name of the parent’s class.

84

Private Data and Methods

 Any attribute or method with two leading underscores in its

name (but none at the end) is private. It cannot be

accessed outside of that class.

 Note:

Names with two underscores at the beginning and the end are for

built-in methods or attributes for the class

 Note:

There is no ‘protected’ status in Python; so, subclasses would be

unable to access these private data either

Importing and Modules

86

Import and Modules

 Programs will often use classes & functions defined in

another file

 A Python module is a single file with the same name (plus

the .py extension)

 Modules can contain many classes and functions

 Access using import (like Java)

Where does Python look for module files?

 The list of directories where Python looks: sys.path

 When Python starts up, this variable is initialized from the
PYTHONPATH environment variable

 To add a directory of your own to this list, append it to this
list.

sys.path.append(‘/my/new/path’)

 Oops! Operating system dependent….

87

Import I

import somefile

 Everything in somefile.py can be referred to by:

somefile.className.method(“abc”)

somefile.myFunction(34)

 from somefile import *

 Everything in somefile.py can be referred to by:

className.method(“abc”)

myFunction(34)

 Careful! This can overwrite the definition of an existing

function or variable!

88

Import II

from somefile import className

 Only the item className in somefile.py gets imported.

 Refer to it without a module prefix.

 Caveat! This can overwrite an existing definition.

className.method(“abc”) This was imported

myFunction(34)  Not this one

89

Commonly Used Modules

 Some useful modules, included with

Python:

 Module: sys - Lots of handy stuff.

 Module: os - OS specific code.

 Module: os.path - Directory processing.

 The Python standard library has lots of

other useful stuff...

90

More Commonly Used Modules

 Module: math - Mathematical functions.

 Exponents

 sqrt

 Module: Random - Random numbers

 Randrange (good for simulations, games, …)

 Uniform

 Choice

 Shuffle

 To see what’s in the standard library of modules, check
out the Python Library Reference:

 http://docs.python.org/lib/lib.html

http://docs.python.org/lib/lib.html

String Operations

String Operations

 The string class provides a number of
methods for useful formatting operations:
>>> “hello”.upper()

‘HELLO’

 Check the Python documentation for
many other handy string operations.

 Helpful hint: use <string>.strip() to
strip off final newlines from lines read
from files

92

String Formatting Operator: %

 The operator % allows strings to be built out of many data
items in a “fill in the blanks” fashion.

 Allows control of how the final string output will appear.

 For example, we could force a number to display with a
specific number of digits after the decimal point.

 Very similar to the sprintf command of C.

>>> x = “abc”

>>> y = 34

>>> “%s xyz %d” % (x, y)

‘abc xyz 34’

 The tuple following the % operator is used to fill in the
blanks in the original string marked with %s or %d.

 Check Python documentation for details.

93

Printing with Python

 print a string to the standard output stream using “print”

 Using the % string operator in combination with the print
command, we can format our output text.
>>> print “%s xyz %d” % (“abc”, 34)

abc xyz 34

“Print” automatically adds a newline to the end of the string. If you
include a list of strings, it will concatenate them with a space
between them.
>>> print “abc” >>> print “abc”, “def”

abc abc def

 Useful trick: >>> print “abc”, doesn’t add newline
(does add space)

94

 Join turns a list of strings into one string.

<separator_string>.join(<some_list>)

>>> “;”.join([“abc”, “def”, “ghi”])

“abc;def;ghi”

 Split turns one string into a list of strings.

<some_string>.split(<separator_string>)

>>> “abc;def;ghi”.split(“;”)

[“abc”, “def”, “ghi”]

String to List to String

95

Convert Anything to a String

 The built-in str() function can convert an instance

of any data type into a string.

 You can define how this function behaves for user-created

data types. You can also redefine the behavior of this

function for many types.

>>> “Hello ” + str(2)

“Hello 2”

96

Special Built-In

Methods and Attributes

98

Built-In Members of Classes

 Classes contain many methods and attributes that are

included by Python even if you don’t define them explicitly.

 Most of these methods define automatic functionality triggered by

special operators or usage of that class.

 The built-in attributes define information that must be stored for all

classes.

 All built-in members have double underscores around their
names: __doc__

99

Special Methods

 For example, the method __repr__ exists for all classes,

and you can always redefine it.

 The definition of this method specifies how to turn an

instance of the class into a string.

 print f sometimes calls f.__repr__() to produce a string for

object f.

 If you type f at the prompt and hit ENTER, then you are also

calling __repr__ to determine what to display to the user as

output.

100

Special Methods – Example

class student:

...

def __repr__(self):

return “I’m named ” + self.full_name

...

>>> f = student(“Bob Smith”, 23)

>>> print f

I’m named Bob Smith

>>> f

“I’m named Bob Smith”

101

Special Methods

 Used to implement operator overloading

 Most operators trigger a special method, dependent on class

__init__: The constructor for the class.

__len__ : Define how len(obj) works.

__copy__: Define how to copy a class.

__cmp__ : Define how == works for class.

__add__ : Define how + works for class

__neg__ : Define how unary negation works for class

 Other built-in methods allow you to give a class the

ability to use [] notation like an array or () notation

like a function call.

102

Special Data Attributes

 These attributes exist for all classes.
__doc__ : Variable storing the documentation string for that

class.

__class__ : Variable which gives you a reference to the
class from any instance of it.

__module__ : Variable which gives you a reference to the
module in which the particular class is defined.

__dict__ :The dictionary that is actually the namespace
for a class (but not its superclasses).

 Useful:
 dir(x) returns a list of all methods and attributes defined

for object x

103

Special Data Items – Example
>>> f = student(“Bob Smith”, 23)

>>> print f.__doc__

A class representing a student.

>>> f.__class__

< class studentClass at 010B4C6 >

>>> g = f.__class__(“Tom Jones”, 34)

File Processing, Error Handling

105

File Processing with Python

About what you’d expect….

fileptr = open(“filename”)

somestring = fileptr.read()

for line in fileptr:
print line

fileptr.close()

106

Exception Handling

 Exceptions are Python objects

 More specific kinds of errors are subclasses of the general Error

class.

 You use the following forms to interact with them:

 try

 except

 else

 finally

for example...

107

>>> def divide(x, y):

try:

result = x / y

except ZeroDivisionError:

print "division by zero!"

else:

print "result is“, result

finally:

print "executing finally clause"

>>> divide(2, 1)

result is 2

executing finally clause

>>> divide(2, 0)

division by zero!

executing finally clause

>>> divide("2“, "1“)

executing finally clause

Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str' and 'str'

Iterators

109

Iterators in Python

>>> for e in [1,2]:

print e

1

2

>>> s = [1,2]

>>> it = iter(s)

>>> it

<iterator object at 0x00A1DB50>

>>> it.next()

1

>>> it.next()

2

>>> it.next()

(most recent call last):

File "<stdin>", line 1, in ?

it.next()

StopIteration

110

Class with iterator in Python
class Reverse:

"Iterator for looping over a sequence backwards"

def __init__(self, data):

self.data = data

self.index = len(data)

def next(self):

if self.index == 0:

raise StopIteration

self.index = self.index - 1

return self.data[self.index]

def __iter__(self):

return self

>>> for char in Reverse('spam'):

print char

m

a

p

s

An iterator is

any object with a

"next" method

111

Iterators and list

comprehensions
>>> [x for x in Reverse('spam')]

['m', 'a', 'p', 's']

>>> [x + x for x in Reverse('spam')]

['mm', 'aa', 'pp', 'ss']

Generators

113

Generators

 Defines an iterator with a function

 Maintains local state automatically

def reverse(data):

for i in range(len(data)):

yield data[len(data)-1-i]

>>> for char in reverse('spam'):

print char

m

a

p

s

114

Using generators

 Merging sequences:

def merge(l, r):

llen, rlen, i, j = len(l), len(r), 0, 0

while i < llen or j < rlen:

if j == rlen or (i < llen and l[i] < r[j]):

yield l[i]

i += 1

else:

yield r[j]

j += 1

115

Using generators

>>> g = merge([2,4], [1, 3, 5])

>>> while True:

print g.next()

1

2

3

4

5

Traceback (most recent call last):

File "<pyshell#73>", line 2, in <module>

print g.next()

StopIteration

>>> [x for x in merge([1,3,5],[2,4])]

[1, 2, 3, 4, 5]

116

Generators and exceptions

>>> g = merge([2,4], [1, 3, 5])

>>> while True:

try:

print g.next()

except StopIteration:

print ‘Done’

break

1

2

3

4

5

Done

>>> a = (x * x for x in xrange(5))

>>> a

>>> <generator object <genexpr> at 0x031A7A80>

>>> for x in a:

...: print x

...:

0

1

4

9

16

List Generators
(expression for name in list if filter)

117

118

A directed graph class

>>> d = DiGraph([(1,2),(1,3),(2,4),(4,3),(4,1)])

>>> print d

1 -> 2

1 -> 3

2 -> 4

4 -> 3

4 -> 1

1

3

4

2

119

A directed graph class

>>> d = DiGraph([(1,2),(1,3),(2,4),(4,3),(4,1)])

>>> [v for v in d.search(1)]

[1, 2, 4, 3]

>>> [v for v in d.search(4)]

[4, 3, 1, 2]

>>> [v for v in d.search(2)]

[2, 4, 3, 1]

>>> [v for v in d.search(3)]

[3]

1

3

4

2

search method returns a generator for the

nodes that can be reached from a given node by

following arrows “from tail to head”

120

The DiGraph constructor
class DiGraph:

def __init__(self, edges):

self.adj = {}

for u,v in edges:

if u not in self.adj: self.adj[u] = [v]

else: self.adj[u].append(v)

def __str__(self):

return '\n'.join(['%s -> %s'%(u,v) \

for u in self.adj for v in self.adj[u]])

...

>>> d = DiGraph([(1,2),(1,3),(2,4),(4,3),(4,1)])

>>> [v for v in d.search(1)]

{1: [2, 3], 2: [4], 4: [3, 1]}

1

3
4

2

The constructor builds a dictionary (self.adj)

mapping each node name to a list of node names that can

be reached by following one edge (an “adjacency list”)

121

The search method

class DiGraph:

...

def search(self, u, visited=set()):

If we haven't already visited this node...

if u not in visited:

yield it

yield u

and remember we've visited it now.

visited.add(u)

Then, if there are any adjacant nodes...

if u in self.adj:

for each adjacent node...

for v in self.adj[u]:

search for all nodes reachable from *it*...

for w in self.search(v, visited):

and yield each one.

yield w

`

1

3
4

2

